Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Quant Imaging Med Surg ; 14(1): 898-908, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38223042

RESUMO

Background: Achalasia cardia (AC) is defined as a disorder of esophageal motility whose diagnostic gold standard depends on high-resolution manometry (HRM). The invasiveness of HRM can cause difficulties in diagnosis, treatment, and follow-up for patients with AC. Thus, we aimed to investigate the function of 3D reconstruction and measurement to prove the wide application of this alternative non-invasive approach for AC. Methods: A total of 126 patients with AC and 40 healthy subjects in Tianjin Medical University General Hospital from January 2018 to October 2022 were enrolled in this retrospective study. Chest CT images of these subjects were used to reconstruct the 3D models of the esophagus, stomach, spine, left crus, and right crus. Measurements of esophagus length, volume of esophagus, gastroesophageal insertion angle (His angle), max thickness of esophageal wall, esophagus maximum transverse and longitudinal diameter, esophagus-spine angle, and spine-lower esophageal sphincter (LES) angle were applied based on the models. Results: Retrocardiac esophagus length, volume of esophagus, max thickness of esophageal wall, esophagus maximum transverse and longitudinal diameter, thoracic esophagus-spine angle, and spine-LES angle in the AC group were higher than those in the control group (all P values <0.05). Among the three subtypes of AC, thoracic esophagus length, intra-abdominal LES length, volume of esophagus, His angle, esophagus maximum transverse and longitudinal diameter, and thoracic esophagus-spine angle all presented statistical differences (all P values <0.05). Correlation analysis revealed that manometric types were positively associated with His angle [r=0.196; 95% confidence interval (CI): 0.009, 0.372; P=0.028] but negatively associated with volume of esophagus (r=-0.480; 95% CI: -0.639, -0.310; P<0.001), esophagus maximum transverse diameter (r=-0.551; 95% CI: -0.679, -0.400; P<0.001), esophagus maximum longitudinal diameter (r=-0.518; 95% CI: -0.649, -0.366; P<0.001), and thoracic esophagus-spine angle (r=-0.324; 95% CI: -0.479, -0.157; P<0.001). Conclusions: This study successfully presented the differences in esophageal length, volume, thickness, and angles between healthy subjects and different AC subtypes on the basis of 3D reconstruction and measurement. Thus, 3D model and measurement can be regarded as a good support for further research and make a valuable contribution to developing non-invasive approaches for AC management.

2.
Chemistry ; 30(9): e202303568, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38061996

RESUMO

Selected gold complexes have been regarded as promising anti-cancer agents because they can bind with protein targets containing thiol or selenol moieties, but their clinical applications were hindered by the unbiased binding towards off-target thiol-proteins. Recently, a novel gold(III)-hydride complex (abbreviated as 1) with visible light-induced thiol reactivity has been reported as potent photo-activated anticancer agents (Angew. Chem. Int. Ed., 2020, 132, 11139). To explore new strategies to stimuli this potential antitumor drug, the effect of oriented external electric fields (OEEFs) on its geometric structure, electronic properties, and chemical reactivity was systematically investigated. Results reveal that imposing external electric fields along the Au-H bond of 1 can effectively activate this bond, which is conducive to its dissociation and the binding of Au site to potential targets. Hence, this study provides a new OEEF-strategy to activate this reported gold(III)-hydride, revealing its potential application in electrochemical therapy. We anticipate this work could promote the development of more electric field-activated anticancer agents. However, further experimental research should be conducted to verify the conclusions obtained in this work.


Assuntos
Antineoplásicos , Ouro , Ouro/química , Antineoplásicos/química , Eletricidade , Compostos de Sulfidrila
3.
Front Microbiol ; 14: 1095555, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819028

RESUMO

Lactobacillus reuteri (L. reuteri), a type of Lactobacillus spp., is a gut symbiont that can colonize many mammals. Since it was first isolated in 1962, a multitude of research has been conducted to investigate its function and unique role in different diseases as an essential probiotic. Among these, the basic functions, beneficial effects, and underlying mechanisms of L. reuteri have been noticed and understood profoundly in intestinal diseases. The origins of L. reuteri strains are diverse, with humans, rats, and piglets being the most common. With numerous L. reuteri strains playing significant roles in different intestinal diseases, DSM 17938 is the most widely used in humans, especially in children. The mechanisms by which L. reuteri improves intestinal disorders include protecting the gut barrier, suppressing inflammation and the immune response, regulating the gut microbiota and its metabolism, and inhibiting oxidative stress. While a growing body of studies focused on L. reuteri, there are still many unknowns concerning its curative effects, clinical safety, and precise mechanisms. In this review, we initially interpreted the basic functions of L. reuteri and its related metabolites. Then, we comprehensively summarized its functions in different intestinal diseases, including inflammatory bowel disease, colorectal cancer, infection-associated bowel diseases, and pediatric intestinal disorders. We also highlighted some important molecules in relation to the underlying mechanisms. In conclusion, L. reuteri has the potential to exert a beneficial impact on intestinal diseases, which should be further explored to obtain better clinical application and therapeutic effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA